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Introduction

Business aircraft manufacturers have been well rewarded in the market place for

responding to technology, and thereby improvements in performance. Notable examples
include the transitions to turboprop and turbojet aircraft as evidenced in the Gulfstream I

and Learjet aircraft. The businesses that capitalized on these transitions were well
rewarded.

No doubt over the past twenty years some have given considerable thought to a Corporate

Supersonic Transport (CST). Gulfstream has, with the announcement of such an aircraft at
Farnborough in 1988 and their 1991 announcement of a joint venture with Sukhoi to this
end, Their market research indicated a substantial market for a 4000 nautical mile CST at

$60 million per aircraft.

This is a considerably different market than that for a commercial airline supersonic
transport. In the second author's AIAA Durand Lecture,' he conjectured that for a

supersonic transport to be economically successful, it would need to fly no more than Mach
1.5 - 1.6 and have the majority of its seats in business and first class. If it were to serve the

growing international market for leisure travel, it would need to be an all wing aircraft

flying obliquely, as suggested long ago by Lee" of Handley Page as a design for what

became the Concorde. Careful studies by two design teams support these conjectures. A
notable exception here are the very detailed studies by the Boeing Company.

The business market of interest here is smaller and better served by speed and airport
flexibility. Overlooked in the Durand lecture was an aircraft he had considered long ago _

when seeking designs that might have a sonic boom that would be acceptable in overland
flights, namely, a corporate supersonic transport. By 1970 the SR-71, with a nominal sonic

boom overpressure of one pound per square foot, had been flying over selected areas of

the western US for some time. Complaints about these unannounced flights were few.

This paper derives from a carefully considered study of the possibility of a corporate

supersonic transport, conducted largely by the first author. It presents the non-proprietary

aspects of a possible Corporate Supersonic Transport (CST). Such a CST could begin
service as early as 2000. This project will require considerable technical assistance from

NASA. Over a ten year production period this aircraft could accrue some $15 billion in
sales, with perhaps 40% of this amount being export sales.
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The authors describe here, in brief, the strategies for developing a commercially successful

CST, describe the potential market for such a business aircraft and the technology selected

for its development. They then describe such an aircraft and delineate some missions for it.

The principal "show stopper" would seem to be the FAA certification of such an aircraft.
The development of noise certification specifications for take off, and possible supersonic.
flight overland routes, are crucial to launching such an aircraft.

The authors conclude by suggesting some important roles for NASA in the development
and eventual success of such an aircraft. We would note here that the roles NASA should

play were well delineated by aircraft category nearly 15 years ago? As civil supersonic

aircraft go, the CST is "smaller, faster, cheaper."

Strategy

Several strategies underpin this aircraft. One derives from the recognition that there are a
considerable number of corporations as well as governments for which the opportunity to

invest time elsewhere can bring a very considerable return in economic or political benefit.
In addition, these opportunities are frequent and the number that can be capitalized on

depends, to a considerable degree, on the speed of transportation available to these

individuals. This is not speed at any cost, but speed with a high economic or political
return.

A second strategy derives from the recognition that there is excess aircraft production

capability among US defense contractors and that some of these have achieved
extraordinarily efficient production.

Third, an "open skies" policy in this country makes business aircraft operations

inexpensive and the development of a business aircraft less problematic here than
elsewhere.

Fourth is the long US history of supersonic flight and an enormously rich technology base
supporting it. That is not to say that the twenty years of commercial Concorde operations

do not provide others with a very considerable base of experience. They do. Indeed, we
are told the Concorde has more supersonic flight hours than all other aircraft, world-wide,

combined. But this experience is less diverse, being limited to a relatively large transport
based on the technology of the late 1950s.

While technological improvements continue, and a new aircraft should plan to eventually

accommodate some, only well established technology should be used in an aircraft that

pioneers certification in a new flight regime.
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The Market

For FY 1993, the number of general aviation flights across the Atlantic alone was
estimated to be 20,000. -_ Forty percent of the NBAA member companies fly to Europe. A

comparable percentage flies in the Pacific and to Asia. Over seventy percent fly to the
Caribbean and Central America. Thus, there is a considerable market for a long range,

high speed, business aircraft.

It seems to us very reasonable to assume a CST will garner at least 15% of the long range
business fleet. This means more than 300 aircraft for corporate use alone. This, augmenled

by government travel, suggests a $10 to $15 billion dollar market if such an aircraft were
available today. It is not. But the proposed CST easily could be available by the turn of the

century.

Market - 2000-2010

• Long Range & Mission-Enabled Applications
• 20,000 Atlantic Crossings/Year- Today

• 1/3 Projected Overland Useage

• Expand / Share Aircraft Long Range Fleet

• Corporate- 300+ Units

• Government/Special Mission - 50+ Units
• $10-$15 Billion Potential Market
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US Business Jet Fleet

The US business jet fleet comprises some 8500 aircraft, and over half of these are of

medium size or larger. The world-wide fleet is lhought to be about 1400 aircraft, with a
similar distribution in size.

For short flights, speed is not crucial. But it becomes important at longer ranges, which

now require longer duration flights. Range is not the crucial ingredient here; time is. Some

business jets will soon be capable of 6500 nautical miles. But at their speeds, this is a very

long trip. An aircraft capable of the same distance, with a stop, in half the time has, we
believe, considerable advantage.

Corporate fleet business travel continues to grow rapidly. The largest growth rate in

business transport is for international travel. As world markets become increasingly
international, an even larger fraction of business travel will occur in private aircraft.
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2,000
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Business Jet Fleet

4,000

2,523

1,744
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Source: AvData, 1995
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The US Long Range Fleet

The US long range business fleet is some 2000 aircraft. World-wide this business fleet may
be well over 3000 aircraft. Ninety percent of the National Business Aircraft Association

(NBAA) owners use their aircraft for international flights. These trips would benefit

greatly from increased speed. Any substantial increase in speed requires supersonic flight

with the dual considerations of wave drag and sonic boom. The first of these compromises
range; the second, if too large, would limit the available routes.

In this regard, two three-hour legs plus an hour long stop are much preferred by long
range travelers than a twelve hour trip. We suggest that a CST will need to be two or more
times faster than its subsonic competition for the value of time to offset the cost of this
speed.

Long Range Fleet
(> 3,000 nm)

• Corporate Aircraft
- Gulfstream II/III/IV
- Falcon 50/900

- Canadair Challenger
- IAI 1125 Astra
- Hawker 1000
- Others

• 1,800 + Aircraft

• Airline Aircraft

- B707/727/737
- DC8/9

- BAC 111
- Others

• 200 + Aircraft
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The Technology

The technology in the proposed aircraft includes well established aerodynamics, a known
engine, and current materials.

The cranked arrow wing planform is used most successfully on the F16XL. Natural flow
wing design," an intuitive approach to area ruling, improves lift to drag. Aircraft shaping

to minimize the equivalent perceived noise of the sonic boom frequently does this too.
Minimum sonic boom perceived noise shapes are not minimum wave drag shapes, but they
are often lower in wave drag than those now considered.

Technology
• Aerodynamics

-Cranked Arrow Wing Planform
F16XL

- Natural Flow Wing Design
- Sonic Boom Shaping

• Propulsion

- AlliedSignal F125-GA-100
ROC IDF

• Materials - Current Technology
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The Aircraft

The first author's studies and knowledge of this market suggest that all eight to ten
passenger aircraft with a nominal range of 3,350 nautical miles at Math 1.8 would have

considerable demand. Such an aircraft can capitalize as well on a higher speed for a shorter
distance. The aircraft under current study is called the CST - 104A. it is the fifth iteralion

in our studies. Routes may be restricted by its sonic boom and, consequently, its range at
near sonic Mach numbers is important.
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CST - Configuration 104A

• 8 - 10 Passengers (1,800 Ibs)

• 3,350 nm Normal Cruise Range

• Mach 1.8 Normal Cruise Speed

• Speed / Range Flexibility
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Speed and Range

Slower supersonic speeds provide longer ranges. At the 104A's maximum speed,
corresponding to a Mach number of 2.1, its range is 2,850 nautical miles. At a Mach

number of 1.6 it isjust over 4,000 nautical miles. At M = 0.95, its range is 3,425 nautical
miles, exceeding that at its M = i.8 supersonic design point.

Speed vs Range

NM
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Size and Weight

The current configuration is 91 feet long and has a maximum takeoff gross weight of
66,000 pounds. This provides adequate space for eight to ten passengers plus crew. It

would enter cruise above the tropopause with a weight of about 60,000 pounds. For this
configuration the weights have been studied carefully.

Weights (Ibs)

Structures 13,900
Propulsion 7,300
Systems & Equipment
Empty Weight
BOW

5,100
26,300
27,000

Payload 1 800
Max Zero Fuel Weight
Max Fuel

28,800
37,200

MLGW 37,200
MTOGW 66,000

Dimensions (ft)

Length 91

Height 18
Span 42
Fuselage Diameter (max) 6.5
Fuselage Fineness Ratio 14
Cabin Length 22
Cabin Width (max) 5.7
Cabin Height (max)
Cabin Volume (ft^3)

6.0
750
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Sonic Boom

The connection between bodies of revolution with minimum wave drag for a given base

area, 7 volume and caliber, _ and three-dimensional aircraft was probably first recognized
by Wallace Hayes in his 1946 CalTech Ph.D. thesis. But it only became clear with the 1955

NACA TN by Lomax. 9 The aircraft shapes that minimize various sonic boom signature
characteristics have been known for more than twenty years. 3 The area distributions for

minimum wave drag and those for various minimum sonic boom characteristics are not
widely different. Thus a high LJD and low sonic boom are consistent with one another.

If the approximately 90 foot CST- 104A begins its Mach 1.8 cruise at an altitude of 50,000
feet at a weight of 60,000 pounds, then, through careful design, _ its sonic boom

overpressure could be as low a 0.4 pounds per square foot. It is lower at a lower Mach

numbers, almost independent of cruise altitude (over the range 40,000 to 60,000 feet),
increases nearly linearly with aircraft weight, and decreases nearly linearly with aircraft
length.

Minimum Positive Phase

Sonic Boom Overpressures
Overpressure

Ibs/ft^2

0.356

0.393

0.416

0.340

0.442

0.436

0.354

0.395

0.392

Weight
Ibs

60 000

60 000

60 000

5O 000

70 000

60 000

60 000

60 000

60 000

Length
ff

9O

90

90

90

90

80

100

90

9O

Ntitude
R

50 000

50 000

50 000

50 000

50 000

50 000

50 000

40 000

60 000

Mach
No

1.5

1.8

2.1

1.8

1.8

1.8

1.8

1.8

1.8

Seebass criterion; W/L^1.5<100,M<1,6,then overpressure cas be less than 0.5 Ibs/ft^2
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Mission

In a maximum range cruise mission at Mach 1.8, the aircraft needs only 24 minutes to

cruise altitude and speed. It cruise-climbs for 2 hours and 45 minutes and then spends 32
minutes decelerating and landing, for a total flight time of 3 hours and 45 minutes to travel

3359 nautical miles. The average speed is about 90% of its cruise speed. Thus, for simple

mission studies, we may approximate the time of travel using the cruise speed at the Mach
number selected.

Mission Integration Summary -
Mach 1.8 Cruise

Block Altitude KTAS GW Fuel Range "lime

Start, Taxi, Takeoff 0 250 66,090 673 0 :11

Climb To Trop 36,089 556 65,417 2,598 69 :10
Supersonic Climb 43,998 1,032 60,976 1,843 43 :03

Cruise 46,890 1,032 36,063 24,913 2,9i2 2:49

Dece leration 46,890 688 34,617 1,446 229 :16

Descend / Land 0 250 33,944, 673 104 :16

Total 941 32,146 3,359 3:45

Divert 43,827 545 30,671 3,274 200 :39
Loiter 32,5 0 :3015,000 28,840 1,831
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City Pair Missions

We depict here 8 city pair missions and approximate the travel times. Tile choice of Mach
number is dictated by the range required. These trips are then compared with the travel

times for the leading subsonic contenders. Travel times are typically 1/2 to 2/5 those for
the subsonic jets. Stops were assumed 1o be one hour.

CST vs Subsonic Jets

Depart
Chicago

Arrive

Los Angeles

CST

1:12

900EX

Singapore

3:06

G-V

3:06

GXP

3:06

Boston San Francisco 1:54 4:48 4:42 4:36

Paris Montreal 2:48 7:06 6:06 6:00

3:42 8:30 7:30 7:30

4:30 9:48 9:48 8:42

5:42 12:48 12:48 12:48

6:48 15:30 13:30 13:36

8:48

Washington
New York

Riyadh

Moscow

21:00

Tokyo

Seattle New Delhi

17:56Brunei Washington 17:12

City Pairs - Range / Speed / Time

Depart

Chicago
Boston

Paris

Riyadh
Moscow

Arrive

Brunei

Los Angeles
San Francisco

Montreal

Singapore

Washington

Range

Washington

1,485

2,310

2,915

3,615

4,210

Stops

8,175

0

0

0

0

Mach

2.10

2.10

1.80

1.70

2.10

Time

2.10

1:12

1:54

2:48

3:42

4:30

5:42Tokyo New York 5,650 1 2.10

Seattle New Delhi 5,990 1 1.80 6:48
2 8:48
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Technology Opportunities

This aircraft would be a likely candidate for laminar flow control. Laminar flow control

could improve its performance considerably and it seems unlikely to be adopted on its
subsonic competitors. Thus the advantage would be long lasting. Incremental

improvements would come from higher turbine inlet temperatures, improved inlets and
diffusers, and better shaping (area ruling) for reduced wave and induced drag.

Technology Opportunities

• Engines
- SFCs

- Temperature Margins
- Nozzle/Diffuser Improvements

• Aerodynamic
- Laminar Flow Control

- Mach L/D vs Overpressure
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Certification

The CST could be the first supersonic business jet. And it could well be the first supersonic
civil airplane since the Concorde. FAA airport noise and sonic boom criteria for

supersonic aircraft are lacking. The CST differs from an HSCT in several ways. For
example, its takeoff and landing profiles differ considerably from an HSCT. For the CST-

104A, takeoff is accomplished without afterburner.

Will a relatively modest sonic boom overpressure allow overland flight? What about the

location of the from the CST acceleration to cruise? While this local focused boom might
be half the sonic boom of an HSCT, its placement in relation to populated areas will have

to be considered. Our long time focus on large supersonic transports has left many
questions regarding a CST to be answered.

Show Stopper - Certification

-Overland Supersonic Operations

• What's Acceptable?

• Performance Penalty for Sonic Boom
Reduction

-Airport (FAR 36)
• Takeoff 92 EPNdB

• Sideline 94 EPNdB

• Approach 98 EPNdB
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NASA's Role and the Next Steps

NASA has the expertise to be of considerable help in identifying and clarifying the noise

issues for supersonic civil aircraft over a very large range of sizes, from the CST It) lhe
HSCT. With some better clarity on these issues, NASA has the expertise to help soh, e the

problems identified.

A CST built with current technology requires the transfer of this technology to thc

manufacturer, as well as considerable assistance with wind tunnel testing and flight
research. This aircraft must have flight handling qualities similar to those of subsonic

business jets if it is to succeed.

The bottom line: It is NASA's role to make the US first in supersonic business jets
and, while second in supersonic airliners, to now make the US first in economically

successful supersonic airliners. Both are a considerable challenge. A CST is around the

corner; an HSCT is a long way off.

Conclusions

The 2000 -2010 market for a CST would seem to be at least $10 to $15 billion. A

considerable portion, although not the majority, of this market is export sales. This market

is responsive to speed because of the considerable benefits of this speed.

The aerodynamic, avionics, control, propulsion, and structural technology bases exist

within NASA, and other government agencies, to build a successful (;ST. The 104A
conceptual design of such an aircraft is well advanced, including three two-engine and two

four-engine studies.

With NASA's and the FAA's help, especially through their clarification of noise issues, and

through technology transfer and other appropriate assistance from the government, a
technically and economically successful CST can be, and should be, built.

Conclusions

• $1+ Billion/Year

- Export Market
• Market Will Respond to Speed

• Technology Exists
• Engine is Mature
• Conceptual Design Advanced

- 3 2-engine configurations
-2 4-engine configurations
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